RETREATY Endodontics kit

RETREATY

Endodontics kit

#1

CHARACTERISTICS AND FUNCTIONS

Bull

Power by:

Has been specifically designed to remove the coronal Gutta-Percha obturation material during a non-surgical endodontic retreatment. The gold treatment of the alloy, the tip design, and the shorter length of the file provide the instrument with the right features for removing the Gutta-Percha in a short time without any solvent.

SkinnY

Thin, but powerful for debris removal, silver color, used for removing Gutta-Percha in the middle third of the root canal system, preserving the coronal region of the canal, and creating a reproducible pathway close to the apical terminus.

ShapY1

Probably the most trendy deep shape that could be achieved in a retreatment. The rotary file has a gold alloy for good flexibility, combined with unwinding resistance.

It's the first real shaper after the patency has been reached. Gold alloy, flexible but with great cutting efficacy, designed to follow the natural anatomy of the canal.

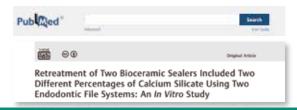
ShapY3

Blue alloy for higher flexibility in case of apical shape enlargement. Maximum adaptation without alteration of the original anatomy.

Nowadays retreatment therapies are increasing compare to primary treatment that's why we decided to create a specific kit to perform endodontic disassembling in a minimal invasive way following Styleitaliano Endodontics philosophy.

MODEL	SIZE/TAPER	TORQUE	
Bull	# 25/.07	1.5 N•cm	
SkinnY	#25/.04	1.5 N•cm	
ShapY1	#20/.05	1.5 N•cm	
ShapY2	#25/.05	1.5 N•cm	
ShapY3	#30/.05	1.5 N•cm	

Cross Section: (


Speed Range: 350-500 Rpm

#3 Literature Review

Proven Cutting Efficiency and Cleaning

- Additionally, the RT system reached the apex faster than PUR. This is likely because RT uses only two of its five files for retreatment, including one with a larger tip size (30/05) compared to PUR's smallest file (20-tip). Preparing the canals to a 25-tip meant PUR's smaller file required more time to remove the filling material.
- The cross-sectional design also contributed to the difference. PUR's convex triangle shape with three cutting angles increases engagement with the filling material. In contrast, RT's design, with two cutting angles, creates more space to eject debris and has less engagement, improving its effectivenes.

Materials	Test	RT.	PUR	Statistical analysis
CeraSeal (CRS)	Time (min, s)	2.33 ± 0.81 a.k	3.83 ± 1.36 ^{8.A}	a icb.
AH Plus Bioceramic (AHB)		1.65 ± 0.55*	1.48±0.29 ⁸	No.
Statistical analysis "titest"		A>8	A>8	

In addition, RT demonstrated less time needed to attain the apex and less remaining materials at the coronal and middle thirds. No influence of the retreatment instrument of the

ultimide brushners were projected for this made. The rample amplitude is retrieve the potential party-proche, and the

Materials and Methods

Materials

Two premixed calcium silicate-based sealers, AHB (Dentsply Sirona) and CRS (Meta Biomed), were used in the present study. The chemical composition and the calcium silicate percentages of each sealer are provided in **-Table 1**.

In addition, two endodontic retreatment systems, ReTreaty (Dental Perfect, Shenzhen City, Guangdong Prov-

for ing the medicand programmer. Note that LTD NACCO and CACC, all the best in made in how a dishiply in the core of the design of the best in make in how a dishiply in the core of the c